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Abstract: There are two classes of phononic structures that can support elastic waves with
non-conventional topology, namely intrinsic and extrinsic systems. The non-conventional topology
of elastic wave results from breaking time reversal symmetry (T-symmetry) of wave propagation. In
extrinsic systems, energy is injected into the phononic structure to break T-symmetry. In intrinsic
systems symmetry is broken through the medium microstructure that may lead to internal resonances.
Mass-spring composite structures are introduced as metaphors for more complex phononic crystals
with non-conventional topology. The elastic wave equation of motion of an intrinsic phononic
structure composed of two coupled one-dimensional (1D) harmonic chains can be factored into
a Dirac-like equation, leading to antisymmetric modes that have spinor character and therefore
non-conventional topology in wave number space. The topology of the elastic waves can be further
modified by subjecting phononic structures to externally-induced spatio-temporal modulation of their
elastic properties. Such modulations can be actuated through photo-elastic effects, magneto-elastic
effects, piezo-electric effects or external mechanical effects. We also uncover an analogy between a
combined intrinsic-extrinsic systems composed of a simple one-dimensional harmonic chain coupled
to a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffness and the
Dirac equation in the presence of an electromagnetic field. The modulation is shown to be able to
tune the spinor part of the elastic wave function and therefore its topology. This analogy between
classical mechanics and quantum phenomena offers new modalities for developing more complex
functions of phononic crystals and acoustic metamaterials.
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1. Introduction

A new frontier in wave propagation involves media that have broken time-reversal symmetry
associated with non-conventional topology. Topological electronic [1], electromagnetic [2,3], and
phononic crystals [4–20] all have demonstrated unusual topologically constrained properties. In
phononic crystals and acoustic metamaterials, symmetry breaking is linked to constraints on the
topological form of acoustic wave functions. For instance, in the context of topology, for the well-known
driven damped oscillator, the amplitude of the wave function has properties isomorphic to the
evolution of a field of parallel vectors tangent to a strip-like manifold and perpendicular to the length
of the strip. The direction along the length of the strip represents frequency space and the strip has to
exhibit a torsion (vectors in the vector field change orientation) at the oscillator resonant frequency as
the amplitude changes sign as one crosses the resonance (i.e., the amplitude accumulates a π-phase
shift). Dissipation aside, one of the most central elements to symmetry breaking and topology of elastic
waves, is dispersion. A simple, linear one-dimensional (1D) harmonic monoatomic chain is a dispersive
system, but one that obeys time-reversal symmetry and supports elastic waves with conventional
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topology in wave vector space. Perturbing the 1D harmonic chain through linear or nonlinear coupling
may create resonant phonon modes that are dispersive, but whose amplitude may depend on the
frequency and wave vector. In this case, the interplay between the coupling and dispersion of the
system may lead to symmetry breaking conditions and therefore non-conventional elastic wave
topology. There exists two-classes of phonon structures possessing non-conventional topology, namely
intrinsic and extrinsic systems. Time-reversal symmetry in intrinsic systems [4–14] is broken through
internal resonance or symmetry breaking structural features (e.g., chirality) and without addition
of energy from the outside. Energy is added to extrinsic topological systems to break time reversal
symmetry [15–20]. A common example of an extrinsic approach is that of time-reversal symmetry
breaking of acoustic waves by moving fluids [21–29]. Recently, extrinsic topological phononic crystals
have demonstrated the astonishing property of non-reciprocity and backscattering-immune edge
states and bulk states establishing classical equivalents of topological electronic insulators. The
non-conventional topology of elastic waves in an intrinsic topological phononic structure has been
associated with the notion of duality in the quantum statistics of phonons (i.e., boson vs. fermion) [4,5].
In the current paper, we illustrate the topological properties of elastic waves in the two classes
of topological phononic structures. We first uncover the spinorial characteristics of elastic waves in
crystals composed of connected masses and springs. An externally applied spatio-temporal modulation
of the spring striffness can also be employed to break the symmetry of the system further [30]. The
modulation is shown to be able to tune the spinor part of the elastic wave function and therefore its
topology. Sections 2 and 3 of this paper, address intrinsic and extrinsic topological phononic structures,
respectively. Conclusions are drawn in Section 4.

2. Intrinsic Topological Phononic Structures

Let us consider a system composed of two coupled one-dimensional harmonic crystals as
illustrated in Figure 1.
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Figure 1. Schematic illustration of the phononic structure composed of two coupled 1-D harmonic
crystals. The atoms in the lower and upper 1-D harmonic crystals have mass m and M, respectively.
The force constant of the springs of each 1-D harmonic crystal is taken to be the same, K0. The force
constant of the coupling springs is KI. The periodicity of the crystal is a.

In absence of external forces, the equations describing the motion of atoms at location n in the
two coupled 1-D harmonic crystals are given by:

m
B2un

Bt2 “ K0 pun`1 ´ 2un ` un´1q ` KI pvn ´ unq “ 0 (1a)

M
B2vn

Bt2 “ K0 pvn`1 ´ 2vn ` vn´1q ´ KI pvn ´ unq “ 0 (1b)
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here u and v represent the displacement in the upper and lower chains, respectively. These
displacements can be visualized as being oriented along the chains. The side springs are illustrated
for the sake of simplicity as vertical spring but physically they would couple masses between chains
along the direction of the displacements.

In the long wavelength limit the discrete Lagrangian is expressed as a continuous second
derivative of position. Taking M “ m for the sake of simplicity and mathematical tractability,
the equations of motion (1a,b) can be rewritten as:

"ˆ

B2

Bt2 ´ β2 B
2

Bx2

˙

I ` α2D
*

U “ 0 (2)

where I is the 2ˆ 2 identity matrix, D “

˜

1 ´1
´1 1

¸

and U “

˜

u
v

¸

is the displacement vector. We

also have defined α2 “
KI
m and β2 “

K0
m . Equation (2) takes a form similar to the Klein-Gordon equation.

Using an approach paralleling that of Dirac, one can factor Equation (2) into the following form:

ˆ„

A
B

Bt
`βB

B

Bx



´ i
α
?

2
C
˙ˆ„

A
B

Bt
`βB

B

Bx



` i
α
?

2
C
˙

Ψ “ 0 (3)

In Equation (3), we have introduced the 4 ˆ 4 matrices: A “

¨

˚

˚

˚

˝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

˛

‹

‹

‹

‚

,

B “

¨

˚

˚

˚

˝

0 0 0 1
0 0 1 0
0 ´1 0 0
´1 0 0 0

˛

‹

‹

‹

‚

, C “

¨

˚

˚

˚

˝

1 ´1 0 0
´1 1 0 0
0 0 1 ´1
0 0 ´1 1

˛

‹

‹

‹

‚

. The symbol i refers to
?
´ 1. The wave

functions Ψ “

¨

˚

˚

˚

˝

ψ1

ψ2

ψ3

ψ4

˛

‹

‹

‹

‚

and Ψ “

¨

˚

˚

˚

˝

ψ1
ψ2
ψ3
ψ4

˛

‹

‹

‹

‚

are 4 vector solutions of
´”

A B
Bt ` βB B

Bx

ı

´ i α?
2

C
¯

Ψ “ 0 and

´”

A B
Bt ` βB B

Bx

ı

` i α?
2

C
¯

Ψ “ 0, respectively. Ψ and Ψ are non-self-dual solutions. These equations do
not satisfy time reversal symmetry ( t Ñ ´tq , T-symmetry, nor parity symmetry ( x Ñ ´xq separately.
In the language of Quantum Field Theory, Ψ and Ψ represent “particles” and “anti-particles”. Let
us now seek solutions of

´”

A B
Bt ` βB B

Bx

ı

´ i α?
2

C
¯

Ψ “ 0 in the plane wave form: ψj “ ajeikxeiωt with
j = 1,2,3,4. This gives the eigen value problem:

$

’

’

’

&

’

’

’

%

´δa1 ` δa2 `ωa3 ` βka4 “ 0
δa1 ´ δa2 ` βka3 `ωa4 “ 0
ωa1 ´ βka2 ´ δa3 ` δa4 “ 0
´βka1 `ωa2 ` δa3 ´ δa4 “ 0

(4)

where δ “ α?
2
. We find two dispersion relations: ω “ ˘βk and ω “ ˘

b

pβkq2 ` 2α2. The first set of
dispersion relations corresponds to branches that start at the origin k = 0 and relates to symmetric eigen
modes. The second set of branches represents antisymmetric modes with a cut off frequency at k = 0 of
α
?

2. Assuming that a1 “ a2 “ aF and that a3 “ a4 “ aB, for the symmetric waves characterized by the
first set of dispersion relations, then the Equation (4) reduce to pω` βkq aB “ 0 and pω´ βkq aF “ 0
which are satisfied by plane waves of arbitrary amplitudes, aF and aB, propagating in the forward (F)
or backward (B) directions, respectively. This is the conventional character of Boson-like phonons. We
now look for the eigen vectors that correspond to the second set of dispersion relations. Let us use the
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positive eigen value as an illustrative example: ω “ `

b

pβkq2 ` 2α2. One of the degenerate solutions
of the system of four linear Equation (4) is:

¨

˚

˚

˚

˝

a1

a2

a3

a4

˛

‹

‹

‹

‚

“ a0

¨

˚

˚

˚

˝

a

ω´ βk
´
a

ω´ βk
a

ω` βk
´
a

ω` βk

˛

‹

‹

‹

‚

(5)

where a0 is some arbitrary constant. Note that the negative signs reflect the antisymmetry of the
displacement. Other solutions can be found by considering the complete set of plane wave solutions
ψj “ aje˘ikxe˘iωt with j = 1,2,3,4 as well as the negative frequency eigen value. The key result is
that the second dispersion curve in the band structure is associated with a wave function whose
amplitude shows spinorial character (Equation (5)). In this case, the displacement of the two coupled
harmonic chains are constrained and the direction of propagation of waves in the two-chain system
are not independent of each other. For instance, at k = 0, the antisymmetric mode is represented by
a standing wave which enforces a strict relation between the amplitude of a forward propagating
wave and a backward propagating wave. This characteristic was shown [4,5] to be representative of
Fermion-like behavior of phonons. As k Ñ8 , ω Ñ `βk , the first two terms in Equation (5) go to zero
and only one direction of propagation (backward) is supported by the medium (third and fourth terms
in Equation (5)). This example illustrates the difference in topology of elastic waves corresponding
to the lower and upper bands in the band structure of the two-chain system. The constraint on the
amplitude of waves in the upper band imparts a nonconventional spinorial topology to the eigen
modes which does exists for modes in the lower band. The topology of the upper band can be best
visualized by taking the limit M Ñ8 . In that case, the system of Figure 1 becomes a single harmonic
chain grounded to a substrate as shown in Figure 2.
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In that limit, the displacement v in Equation (1a,b) is negligible. Equation (2) becomes the
Klein-Gordon equation: B2u

Bt2 ´ β2 B2u
Bx2 ` α2u “ 0 with α2 “ KI{m and β2 “ K0{m. This equation

describes only the displacement field, u. Equation (3) can be written as the set of Dirac-like equations:

„

σx
B

Bt
` iβσy

B

Bx
´ iαI



Ψ “ 0 (6a)

„

σx
B

Bt
` iβσy

B

Bx
` iαI



Ψ “ 0 (6b)
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where σx and σy are the 2 ˆ 2 Pauli matrices:

˜

0 1
1 0

¸

and

˜

0 ´i
i 0

¸

and I is the 2 ˆ 2

identity matrix.
We now write our solutions in the form: Ψk “ Ψ pk, ωkq “ c0ξk pk, ωkq ep˘qiωktep˘qikx and

Ψk “ Ψ pk, ωkq “ c0ξk pk, ωkq ep˘qiωktep˘qikx where ξk and ξk are two by one spinors. Inserting the
various forms for these solutions in Equation (6a,b) lead to the same eigen values that we obtained
before for the upper band of the two-chain system, namely by ω “ ˘

a

α2 ` β2k2. Again, let us
note that the band structure has two branches corresponding to positive frequencies and negative
frequencies. Negative frequencies can be visualized as representing waves that propagate in a direction
opposite to that of waves with positive frequency. The spinor part of the solutions for the different
plane waves is summarized in the Table 1 below. Negative and positive k correspond to waves
propagating in opposite direction.

Table 1. Two by one spinor solutions of Equation (6a,b) for the different plane wave forms.

e`ikxe`iωkt e´ikxe`iωkt e`ikxe´iωkt e´ikxe´iωkt

ξk

ˆ
a

ω` βk
a

ω´ βk

˙ ˆ
a

ω´ βk
a

ω` βk

˙ ˆ

´
a

ω´ βk
a

ω` βk

˙ ˆ

´
a

ω` βk
a

ω´ βk

˙

ξk

ˆ
a

ω´ βk
´
a

ω` βk

˙ ˆ
a

ω` βk
´
a

ω´ βk

˙ ˆ
a

ω` βk
a

ω´ βk

˙ ˆ
a

ω´ βk
a

ω` βk

˙

Table 1 can be used to identify the symmetry properties of Ψ and Ψ in the allowed space: k, ω.
We find the following transformation rules:

T
ω Ñ ω

k Ñ ´k

pΨ pω, kqq “ Ψ pω, kq (7a)

T
ω Ñ ´ω

k Ñ k

pΨ pω, kqq “ iσxΨ p´ω, kq (7b)

which lead to the combined transformation:

T
ω Ñ ´ω

k Ñ ´k

pΨ pω, kqq “ iσxΨ p´ω,´kq (8)

We have defined T
ω Ñ ω

k Ñ ´k

and T
ω Ñ ´ω

k Ñ k

as transformations that change the sign of the

frequency and wave number, respectively. As one crosses the gap at the origin k = 0, the multiplicative
factor “i” indicates that the wave function accumulated a phase of π

2 . Also, the Pauli operator σx

enables the transition from the space of solutions Ψ to the space of Ψ. We also note the orthogonality
condition ΨσxΨ “ 0. The topology of the spinorial wave functions that reflects their symmetry
properties is illustrated in Figure 3.
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We now shed more light on the properties of the spinorial solutions by treating α in Equation (6a,b)
as a perturbation, ε. When α “ 0, Equation (6a) reduces to the two independent equations:

ˆ

B

Bt
´ β

B

Bx

˙

ϕ
p0q
1 “ 0 (9a)

ˆ

B

Bt
´ β

B

Bx

˙

ϕ
p0q
1 “ 0 (9b)

whose solutions correspond to plane waves propagating in the forward direction, ϕ
p0q
1 , with dispersion

relation ω` “ βk and the backward direction, ϕ
p0q
2 with dispersion relation ω´ “ ´βk. We rewrite

Equation (9) in the form:
ˆ

B

Bt
´ β

B

Bx

˙

ϕ1 “ iεϕ
p0q
2 “ iεeikxeω´t (10a)

ˆ

B

Bt
` β

B

Bx

˙

ϕ2 “ iεϕ
p0q
1 “ iεeikxeω`t (10b)

Seeking the particular solutions to first-order, ϕ
p1q
1 and ϕ

p1q
2 , which follow in frequency the driving

terms on the right-side side of Equation (10a,b), we find their respective amplitude to be:

a1 “
ε

ω´ ´ βk
“

ε

ω´ ´ω`
(11a)

a2 “
ε

ω` ` βk
“

ε

ω` ´ω´
“ ´a1 (11b)

Since ω` “ ω´ at k = 0 only, the amplitude of the first-order perturbed forward wave, a1 changes
sign as k varies from ´8 to `8. A similar but opposite change of sign occurs for the backward
perturbed amplitude. These changes of sign are therefore associated with changes in phase of π and
´π for the forward and backward waves as one crosses the origin k = 0. These phase changes (sign
changes) are characteristic of that occurring at a resonance. The gap that would occur at k = 0 in the
band structure of the harmonic chain grounded to a substrate via side springs, should we push the
perturbation theory to higher orders, may therefore be visualized as resulting from a resonance of
the forward waves driven by the backward propagating waves and vice versa. However, since to
first-order the amplitudes given by Equation (11a,b) diverge at the only point of intersection between
the dispersion relations of the forward and backward waves, we have to use analytic continuation to
expand them into the complex plane:

a`1 “
ε

ω´ ´ βk´ iη
“

ε

´2βk´ iη
(12a)
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a`2 “
ε

ω` ` βk` iη
“

ε

`2βk` iη
(12b)

where η Ñ 0 continues the eigen values ω´ and ω` into the complex plane.
By simple inspection, we can see that at the origin, k = 0, both amplitudes are pure imaginary

quantities and therefore exhibit a phase of ˘π
2 . This is expected as Equation (12a,b) are representative

of the amplitude of a driven damped harmonic oscillator which also shows a phase of π
2 with respect

to the driving frequency at resonance. It is instructive to calculate the Berry connection [31] for these
perturbed amplitudes. The Berry connection determines the phase change of a wave as some parameter
takes the wave function along a continuous path on the manifold that supports it. Since the Berry
phase applies to continuous paths, we cannot use that concept to determine the phase change across
the gap of our system, i.e., between the positive and negative frequency branches of the band structure.
Therefore, we resort to calculating the Berry connection for the first-order perturbed solution which
still remains continuous but may capture the interaction between directions of propagation. Our
intention is to characterize the topology of the spinorial part of the wave function Equation (12a,b), by
calculating the change in phase of the waves as one crosses k = 0. It is important first to normalize the

spinor: ξ “

˜

a`1
a`2

¸

. This normalized spinor takes the form: rξ “

˜

ra`1
ra`2

¸

“

?
4β2k2`η2
?

2

˜

1
´2βk´iη

1
`2βk`iη

¸

.

The Berry connection is given by A pkq “ ´irξ˚ B
rξ
Bk “ ´ira`1

˚ Bra
`
1
Bk ´ ira`2

˚ Bra
`
2
B k . After several analytical and

algebraic manipulations, we obtain:

A pkq “ β
η

4β2k2 ` η2 ` β
η

4β2k2 ` η2 (13)

In Equation (13), the contribution to the Berry connection of ra`1 and ra`2 are identical. Using the
identities: lim

ηÑ0

η

x2`η2 “ πδ pxq and δ paxq “ 1
a δ pxq, leads to

A pkq “
π

2
δ pkq `

π

2
δ pkq (14)

The contribution of each direction of propagation to the spinorial part of the wave function
accumulates a π

2 phase shift as one crosses the origin k = 0.

3. Extrinsic Phononic Structure

In the previous section, we revealed the spinorial character of the elastic wave function in the
two-chain system and one chain coupled to the ground. The purpose of this section is to investigate
the behavior of field Ψ when the parameter α (spring stiffness, KI) is subjected to a spatio-temporal
modulation, i.e., α “ α0 ` α12sin pKx`Ωtq where α0 and α1 are constants (see Figure 4). Here, K “ 2π

L
where L is the period of the modulation. Ω is the frequency modulation and its sign determines the
direction of propagation of the modulation.

The question arises as to the effect of such a modulation on the state of the fermion-like phonons.
The periodicity of the modulated one-dimensional medium suggests that we should be seeking
solutions of Equation (1) in the form of Bloch waves: Ψ px, tq “

ř

k
ř

g ψ pk, g, tq eipk`gqx where x P r0, Ls.
The wave number k is limited to the first Brillouin zone:

“

´π
L , π

L
‰

and g “ 2π
L l with l being an integer.

Choosing Equation (6a), we obtain the modulated Dirac-like equation in the Fourier domain:
”

σx
B
Bt ` iβσy pik˚q ´ iα0 I

ı

ψ pk˚, tq

´α1 I
“

ψ pk˚ ` K, tq eiΩt ´ ψ pk˚ ´ K, tq e´iΩt‰ “ 0
(15)

where k˚ “ k` g.
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to a substrate with spatial modulation of the side spring stiffness illustrated as a “pink glow” of varying
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Consistent with Quantum Field Theory (QFT) approaches, we solve Equation (15) using
perturbation theory and in particular multiple time scale perturbation theory [32] up to second-order.
Nowadays, the multiple-time-scales perturbation theory (MTSPT) for differential equations is a
very popular method to approximate solutions of weakly nonlinear differential equations. Several
implementations of this method were proposed in various fields of mathematics, mechanics and
physics [33–38]. Moreover, Khoo et al. [39] have shown that the MTSPT is a reliable theoretical
tool for studying the lattice dynamics of an anharmonic crystal. More recently, Swinteck et al. [40]
applied successfully the MTSPT, as described in Reference [19], for solving propagation equations in a
quadratically nonlinear monoatomic chain of infinite extent. Consequently, we used the MTSPT for
solving Equation (15).

The parameter α1 is treated as a perturbation ε. The wave function is written as a second-order
power series in ε, namely:

ψ pk˚, τ0, τ1, τ2q “ ψp0q pk˚, τ0, τ1, τ2q ` εψp1q pk˚, τ0, τ1, τ2q ` ε2ψp2q pk˚, τ0, τ1, τ2q

here ψpjq with j “ 0, 1, 2 are wave functions expressed to zeroth, first and second-order. We have
also replaced the single time variable, t, by three variables representing different time scales: τ0 “ t,
τ1 “ εt, and τ2 “ ε2t “ ε2τ0. We can subsequently decompose Equation (15) into equations to zeroth,
first and second-order in ε. The zeroth-order equation consists of the Dirac-like equation in absence
of modulation:

„

σx
B

Bτ0
` iβσy pik˚q ´ iα0 I



ψp0q pk˚, τ0, τ1, τ2q “ 0 (16)

As seen in Section 2, its solutions take the form ψp0q pk˚, τ0, τ1, τ2q “ ap0q pk˚, τ1, τ2q eiω0τ0 with

ap0q pk˚, τ1, τ2q “

˜

ap0q1

ap0q2

¸

“ a0

˜

a

ω0 ` βk˚
a

ω0 ´ βk˚

¸

. eiω0τ0 and ap0q represent the orbital and the spinorial
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parts of the solution, respectively. We have the usual eigen values: ω2
0 “ α2 ` β2 pk˚q2. Inserting the

zeroth-order solution into Equation (15) expressed to first-order leads to

”

σx
B
Bτ0
` iβσy pik˚q ´ iα0 I

ı

ψp1q pk˚, τ0, τ1, τ2q “ ´σx
B
Bτ1

ψp0q pk˚, τ0, τ1, τ2q

I
”

ψp0q pk˚ ` K, τ0, τ1, τ2q eiΩτ0 ´ ψp0q pk˚ ´ K, τ0, τ1, τ2q e´iΩτ0
ı (17)

The solutions of the first-order Dirac equation are the sum of solutions of the homogeneous
equation and particular solutions. The homogenous solution is isomorphic to the zeroth-order solution,
it will be corrected in a way similar to the zeroth-order solution as one accounts for higher and higher
terms in the perturbation series. Under these conditions and to ensure that there are no secular terms
(i.e., terms that grow with time and that are incompatible with the assumption that ψp1q must be a
correction to ψp0q in the particular solution of Equation (17), the pre-factors of terms like eiω0τ0 are
forced to be zero [39]. Subsequently, the derivative of the amplitudes ap0q pk˚, τ1, τ2q with respect to τ1

must vanish and these amplitudes only depend on τ2. The right-hand side of Equation (17) reduces to
the second term only. The particular solution of that simplified equation contains frequency shifted
terms given by:

ψ
p1q
1,P “ b1eipω0`Ωqτ0 ` b11eipω0´Ωqτ0

ψ
p1q
2,P “ b2eipω0`Ωqτ0 ` b12eipω0´Ωqτ0

The coefficients b1, b11, b2, b12 are resonant terms:

b1 pk˚q “
i

α0
ap0q1 pk˚ ` Kq `

1
α0

b2 pk˚q rpω0 `Ωq ` βk˚s

b11 pk
˚q “

´i
α0

ap0q1 pk˚ ´ Kq `
1
α0

b12 pk
˚q rpω0 ´Ωq ` βk˚s

b2 pk˚q “ ´i

!

ap0q1 pk˚ ` Kq rpω0 `Ωq ´ βk˚s ` α0ap0q2 pk˚ ` Kq
)

pω0 `Ωq2 ´ pβk˚q2 ´ α2
0

b12 pk
˚q “ `i

!

ap0q1 pk˚ ´ Kq rpω0 ´Ωq ´ βk˚s ` α0ap0q2 pk˚ ´ Kq
)

pω0 ´Ωq2 ´ pβk˚q2 ´ α2
0

In the preceding relations, we have defined: ω0 ` Ω “ ω0 pk˚ ` Kq ` Ω and ω0 ´ Ω “

ω0 pk˚ ´ Kq `Ω. We have also omitted the time dependencies for the sake of compactness.
To second order, the Dirac-like equation is written as:

”

σx
B
Bτ0
` iβσy pik˚q ´ iα0 I

ı

ψp2q pk˚, τ0, τ2q “

´σx
Bψp0qpk˚,τ0,τ2q

Bτ2
` I

”

ψp1q pk˚ ` K, τ0, τ2q eiΩτ0 ´ ψp1q pk˚ ´ K, τ0, τ2q e´iΩτ0
ı (18)

”

σx
B
Bτ0
` iβσy pik˚q ´ iα0 I

ı

ψp2q pk˚, τ0, τ2q “The derivative Bψp0qpk˚,τ0,τ2q
Bτ2

leads to secular terms.
The homogeneous part of the first-order solution does not contribute secular terms but the particular
solution does. Combining all secular terms and setting them to zero lead to the conditions:

Bap0q1 pk˚q
Bτ2

“ iap0q1 pk˚qG1 ` iap0q2 pk˚q F (19a)

Bap0q2 pk˚q
Bτ2

“ iap0q1 pk˚q F` iap0q2 pk˚qG (19b)
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where we have defined:

F “ α0

#

1

pω0 pk˚q ´Ωq2 ´ω2
0 pk

˚ ` Kq
`

1

pω0 pk˚q `Ωq2 ´ω2
0 pk

˚ ´ Kq

+

G “

#

pω0 pk˚q ´Ωq ` β pk˚ ` Kq
pω0 pk˚q ´Ωq2 ´ω2

0 pk
˚ ` Kq

`
pω0 pk˚q `Ωq ` β pk˚ ´ Kq
pω0 pk˚q `Ωq2 ´ω2

0 pk
˚ ´ Kq

+

G1 “

#

pω0 pk˚q ´Ωq ´ β pk˚ ` Kq
pω0 pk˚q ´Ωq2 ´ω2

0 pk
˚ ` Kq

`
pω0 pk˚q `Ωq ´ β pk˚ ´ Kq
pω0 pk˚q `Ωq2 ´ω2

0 pk
˚ ´ Kq

+

We note the asymmetry of these quantities. The terms G, G’ and F diverge within the Brillouin
zone of the modulated systems when the condition pω0 pk˚q `Ωq2 ´ω2

0 pk
˚ ´ Kq Ñ 0 is satisfied but

not when pω0 pk˚q ´Ωq2 ´ω2
0 pk

˚ ` Kq Ñ 0 . This asymmetry reflects a breaking of symmetry in wave
number space due to the directionality of the modulation.

Equation (19a,b) impose second-order corrections onto the zeroth-order solution. We multiply
the relations (18a,b) by ε2eiω0τ0 to obtain them in terms of ψp0q and subsequently recombine them with
the zeroth-order Equation (3). This procedure reconstructs the perturbative series of Equation (15) in
terms of ψp0q only:

„

σx

ˆ

B

Bt
´ i∅k˚

˙

` iβσy pik˚ ´ iAk˚q ´ i pα0 `mk˚q I


ψp0q pk˚, tq “ 0 (20)

with

˜

∅k˚

Ak˚

¸

“

˜

ε2

2

`

G` G1
˘

ε2

2β

`

G´ G1
˘

¸

and mk˚ “ ε2F. To obtain Equation (20), we have also used:

B
Bt “

B
Bτ0
` ε2 B

Bτ2
. Equation (20) shows that Equation (15) describing the dynamics of elastic waves in a

harmonic chain grounded to a substrate via side springs, whose stiffness is modulated in space and
time, is to second-order isomorphic to Dirac equation in Fourier domain for a charged quasiparticle
including an electromagnetic field. The quantity ∅k˚ plays the role of the electrostatic potential and
Ak˚ the role of a scalar form of the vector potential. The parentheses

´

B
Bt ´ i∅k˚

¯

and pik˚ ´ iAk˚q

are the Fourier transforms of the usual minimal substitution rule. α0 `mk˚ is the dressed mass of the
quasiparticle. The mechanical system provides a mechanism for exchange of energy between the main
chain modes and the side springs. The side springs lead to the formation of a fermion-like quasiparticle
while their modulation provides a field through which quasiparticles interact. The strength and nature
of the interaction is controllable through the independent modulation parameters, α1 ,Ω and K.

The mechanical system allows for the exploration of a large parameter space of scalar QFT as
the functions ∅k˚ and Ak˚ can be varied by manipulating the spatio-temporal modulation of the side
spring stiffness. We imagine, therefore, that this classical phononic system can be employed to examine
the behavior of scalar QFT from weak to strong coupling regimes, as well as, at all intermediate
couplings. Further, the capacity to separate the ratio of the effective potentials opens avenues for the
experimental realization of scalar fields whose behavior could previously only have been theorized.

We now seek solutions of Equation (20). These are solutions of Equation (18) with spinorial
part ap0q pk˚, τ2q satisfying the second-order conditions given by Equation (19a,b). These

conditions can be reformulated as Bra
Bτ2

“ iMra where the vector ra “

˜

ap0q1

ap0q2

¸

and the matrix

M “

˜

G1 F
F G

¸

. Solutions of this 2 ˆ 2 system of first-order linear equations are easily obtained

as: ra “ Creeiλτ2 ` C1re1eiλ1τ2 where λ1, re, and re1 are the eigen values and eigen vectors of the matrix M.

The coefficients C and C’ are determined by the boundary condition: lim
εÑ0

ra “ a0

˜

a

ω0 ` βk˚
a

ω0 ´ βk˚

¸

.
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We find the eigen values λ “ G`G1
2 `

c

´

G´G1
2

¯2
` F2 and λ1 “ G`G1

2 ´

c

´

G´G1
2

¯2
` F2.

The respective eigen vectors are re “ a0
a

ω0 pk˚q ` βk˚F

¨

˝

1

G´G1
2F `

c

´

G´G1
2F

¯2
` 1

˛

‚

and re1 “ a0
a

ω0 pk˚q ` βk˚F

¨

˝

1

G´G1
2F ´

c

´

G´G1
2F

¯2
` 1

˛

‚. The coefficients are

given by C “ 1
F

1

2

c

´

G´G1
2F

¯2
`1

#

?
ω0pk˚q´βk˚

?
ω0pk˚q`βk˚

´ G´G1
2F `

c

´

G´G1
2F

¯2
` 1

+

and C1 “

1
F

1

2

c

´

G´G1
2F

¯2
`1

#

´

?
ω0pk˚q´βk˚

?
ω0pk˚q`βk˚

` G´G1
2F `

c

´

G´G1
2F

¯2
` 1

+

. We note that although the quantities

G, G’ and F may diverge the ratio G´G1
2F remains finite. The directed spatio-temporal modulation

impacts both the orbital part and the spinor part of the zeroth-order modes. The orbital part
of the wave function is frequency shifted to ω0 ` ε2λ and ω0 ` ε2λ1. The quantities ε2λ t and
ε2λ1t represent phase shifts analogous to those associated with the Aharonov-Bohm effect [41]
resulting from electrostatic and vector potentials ∅k˚ and Ak˚ . Near the resonant condition:
pω0 pk˚q `Ωq2 ´ω2

0 pk
˚ ´ Kq Ñ 0 , it is the eigen value λ Ñ 1

pω0pk˚q`Ωq´ω0pk˚´Kq which diverges.
This divergence is indicative of the formation of a gap in the dispersion relation [31]. The eigen
value λ1 Ñ 1

pω0pk˚q`Ωq`ω0pk˚´Kq „
1

2pω0pk˚q`Ωq does not diverge. Since the frequency shift, ε2λ1, is

expected to be small compared to ω0 pk˚q, the orbital term eiλτ2 Ñ 1 . Considering that the lowest
frequency ω0 is α0, this condition would occur for all k*. Therefore, the term eipω0`ε2λ1qτ0 „ eiω0τ0 will
essentially contribute to the band structure in a perturbative way similar to that of the uncorrected
zeroth-order solution or homogeneous parts of the first or second-order equations. The spinorial part
of the zeroth-order solution is also modified through the coupling between the orbital and “spin”
part of the wave function as seen in the expressions for reand re1. This coupling suggests an approach
for the manipulation of the “spin” part of the elastic wave function by exciting the medium using a
spatio-temporal modulation. Again, these alterations can be achieved by manipulating independently
the magnitude of the modulation, α1 as well as the spatio-temporal characteristics Ω and K.

The perturbative approach used here is showing the capacity of a spatio-temporal modulation
to control the “spin-orbit” characteristics of elastic modes in a manner analogous to electromagnetic
waves enabling the manipulation of the spin state of electrons [42]. However, the pertubative method
is not able to give a complete picture of the effect of the modulation on the entire band structure of
the elastic modes. For this, the vibrational properties of the mechanical system are also investigated
numerically beyond perturbation theory. We calculate the phonon band structure of the modulated
elastic Klein-Gordon equation since its eigen values are identical to those of the modulated Dirac-like
equation. We use a one-dimensional chain that contains N = 2400 masses, m = 4.361 ˆ 10´9 kg, with
Born-Von Karman boundary conditions. The masses are equally spaced by h = 0.1 mm. The parameters
K0 = 0.018363 kg¨m2¨ s´2 and KI = 2295 kg¨ s´2. The spatial modulation has a period L = 100 h and
an angular frequency Ω = 1.934 ˆ 105 rad/s. We have also chosen the magnitude of the modulation:
α1 “

1
10 α0. The dynamics of the modulated system is amenable to the method of molecular dynamics

(MD). The integration time step is dt = 1.624 ˆ 10-9 s. The dynamical trajectories generated by the
MD simulation are analyzed within the framework of the Spectral Energy Density (SED) method [43]
for generating the band structure. To ensure adequate sampling of the system’s phase-space the SED
calculations are averaged over 4 individual MD simulations, each simulation lasting 220 time steps
and starting from randomly generated initial conditions. We report in Figure 5, the calculated band
structure of the modulated system.
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Figure 5. Band structure of the mechanical model system of Figure 2 calculated using the Spectral 
Energy Density (SED) method. The band structure is reported as a contour plot of the natural 
logarithm of the SED (color bar) versus normalized frequency and reduced wave number. The 
frequency is normalized to the lowest value of unperturbed band, namely 1.507 × 105 Hz. The 
horizontal axis is extended to the right beyond the first Brillouin zone [−π,π] to highlight the 
asymmetry and therefore the modulation-induced symmetry breaking of the band structure. The 
brighter branches correspond to the usual zeroth-order type wave (݁௜ఠబ(௞ା௚)ఛబ ). The fainter 

branches parallel to the brighter ones are characteristic of first-order waves (݁௜(ఠబ(௞ା௚)±ஐ	)ఛబ). 

Figure 5 retains the essential features of the unperturbed band structure but for frequency 
shifted Bloch modes ߱଴(݇∗) ± Ω and two band gaps in the positive half of the Brillouin zone. The 
periodicity of the band structure in wave number space is retained but its symmetry is broken. The 

Figure 5. Band structure of the mechanical model system of Figure 2 calculated using the Spectral
Energy Density (SED) method. The band structure is reported as a contour plot of the natural logarithm
of the SED (color bar) versus normalized frequency and reduced wave number. The frequency is
normalized to the lowest value of unperturbed band, namely 1.507 ˆ 105 Hz. The horizontal axis is
extended to the right beyond the first Brillouin zone [´π,π] to highlight the asymmetry and therefore
the modulation-induced symmetry breaking of the band structure. The brighter branches correspond
to the usual zeroth-order type wave (eiω0pk`gqτ0 ). The fainter branches parallel to the brighter ones are
characteristic of first-order waves (eipω0pk`gq˘Ω qτ0 ).

Figure 5 retains the essential features of the unperturbed band structure but for frequency shifted
Bloch modes ω0 pk˚q ˘Ω and two band gaps in the positive half of the Brillouin zone. The periodicity
of the band structure in wave number space is retained but its symmetry is broken. The frequency
shifted modes are illustrative of the first-order particular solutions. Second-order frequency shifted
modes ω0 pk˚q ˘ 2Ω do not show in the figure due to their very weak amplitude. The two band gaps
occur at the wave vector kgap defined by the condition

`

ω0
`

kgap ` g
˘

`Ω
˘2
´ω2

0
`

kgap ` g´ K
˘

“ 0
for g = 0 and g = K. It is the band folding due to the spatial modulation which enables overlap and
hybridization between the frequency-shifted Bloch modes and the original Bloch modes of the lattice
without the time dependency of the spatial modulation. The hybridization opens gaps in a band
structure that has lost its mirror symmetry about the origin of the Brillouin zone. Considering the
first gap and following a path in k space, starting at k = 0 at the bottom of the lowest branch, the wave
function transitions from a state corresponding to a zeroth-order type wave, with orbital part (eiω0pkqτ0 )

and spinor part

˜

a

ω0 ` βk
a

ω0 ´ βk

¸

to a wave having the characteristics of the first-order wave with

orbital part (eipω0pk˚q´Ω qτ0) and spinor part

˜

b11
b12

¸

. The control of the position of the gap through
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Ω and K enables strategies for tuning the spinorial character of the elastic wave. The effect of these
“spin-orbit” manipulations of the elastic system can be measured by examining the transmission of
plane waves as shown in [4].

It is also instructive to consider the symmetry of the Dirac-like equations in the presence of
a spatio-temporal modulation to best understand its effect on the spinorial character of the wave
function. In the case of a modulation with a general phase ϕ, Equation (6a,b) take the overall form:

„

σx
B

Bt
` iβσy

B

Bx
´ iα0 I ´ iα1sin pKx`Ωt` ϕq



Ψ “ 0 (21a)

„

σx
B

Bt
` iβσy

B

Bx
` iα0 I ` iα1sin pKx`Ωt` ϕq



Ψ “ 0 (21b)

Applying the joint T-symmetry and parity symmetry to Equation (21a) does not result in
Equation (21b) for all phases ϕ but a few special values. The modulated Equations (21a,b) have
lost the symmetry properties of the unmodulated Dirac equations Equation (6a,b). The gap that formed
at kgap in Figure 4 is, therefore, not a Dirac point. The transformations T

ω Ñ ω

k Ñ ´k

and T
ω Ñ ´ω

k Ñ k

do

not apply near kgap. The constraints imposed on the spinorial component of the elastic wave function
may be released in the vicinity of that wavenumber. This constraint was associated with Fermion-like
wave functions which have the character of quasistanding waves, i.e., composed of forward and
backward waves with a very specific proportion of their respective amplitudes. The release of the
Dirac constraint associated with the impossibility for the medium to support forward propagating
waves (+kgap) but only backward propagating waves (´kgap), may lead again to Boson-like behavior
with no restriction on the amplitude of the backward propagating waves.

4. Conclusions

We presented phononic structures composed of two coupled one-dimensional harmonic chains
and one harmonic chained grounded to a substrate that exhibit intrinsic non-conventional topology.
This topology is associated with wave functions that possess spinorial and orbital components. The
spinorial character of the wave function imparts a fermion-like character to the phonons. This behavior
is reflected in a constraint on the amplitude of forward and backward going waves. We also developed
a scalar Quantum Field Theory that demonstrates the analogy between the one-dimensional elastic
system subjected to a spatio-temporal modulation of its elastic properties and the one-dimensional
Dirac equation including an electromagnetic field. The directional spatio-temporal modulation enables
the tuning of the spinorial and orbital components of the wave function. Since the spatio-temporal
characteristics of the modulation are independent of each other they offer exquisite means of controlling
the spinor components of the elastic wave. Practical physical realization of the modulation of elastic
medium stiffness could be achieved by exploiting a variety of non-contact approaches including
the photo-elastic effect [44], the magneto-elastic effect [45], and contact approaches such as the
piezoelectric effect [46] or externally induced mechanical deformations [47]. The analogy between
classical mechanical systems such as the ones demonstrated here and quantum and electromagnetic
phenomena offer a new modality for developing more complex functions of phononic crystals and
acoustic metamaterials. Such mechanical analogues of electromagnetic and quantum phenomena have
a long history. For instance, Maxwell in his seminal paper “A dynamical theory of the electromagnetic
field” [48] sought an elastic model of electrical and magnetic phenomena and electromagnetic waves.
Other mechanical models of physical phenomena abound, including quantum mechanical behavior.
For instance, the localization of ultrasound waves in two-dimensional [49] and three-dimensional [50]
disordered phononic media serve as mechanical analogues of Anderson localization of electrons.
Tunneling of classical waves through phononic crystal barriers establishes a correspondence with its
quantum counterpart [51,52].
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In addition to the mass spring systems reported in this paper, other physical systems that support
elastic waves that can be described by Klein-Gordon-like equations include plates and phononic
crystal plates [53], phononic crystals which support rotational elastic waves [5], granular phononic
materials [54], elastic and sound wave guides with slowly varying cross sectional area [55].

Finally, we have addressed the topology of elastic wave functions and symmetry breaking in
two linear 1-D mass-spring systems as well as in an extrinsic non-linear 1-D mass-spring system
subjected to a spatio-temporal modulation of stiffness. More complex symmetry breaking conditions
are expected to arise when considering intrinsic non-linear systems [56,57], such as for instance,
phenomena associated with nonlinear resonances between linear and nonlinear systems. Indeed,
coupled nonlinear and linear mechanical systems have recently received attention for their application
in targeted energy transfer, whereby undesirable mechanical energy is directed irreversibly from a
linear system to a nonlinear system [58].
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